11 research outputs found

    Reminiscences on Influential Papers

    Get PDF
    Reminiscences on Parallel evaluation of multi-join queries. (Proc. SIGMOD Conf. 1995), Annita Wilschut, Jan Flokstra, Peter M.G. Apers

    Distributed top-k aggregation queries at large

    Get PDF
    Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network

    10 Years of Probabilistic Querying – What Next?

    Full text link
    Over the past decade, the two research areas of probabilistic databases and probabilistic programming have intensively studied the problem of making structured probabilistic inference scalable, but — so far — both areas developed almost independently of one another. While probabilistic databases have focused on describing tractable query classes based on the structure of query plans and data lineage, probabilistic programming has contributed sophisticated inference techniques based on knowledge compilation and lifted (first-order) inference. Both fields have developed their own variants of — both exact and approximate — top-k algorithms for query evaluation, and both investigate query optimization techniques known from SQL, Datalog, and Prolog, which all calls for a more intensive study of the commonalities and integration of the two fields. Moreover, we believe that natural-language processing and information extraction will remain a driving factor and in fact a longstanding challenge for developing expressive representation models which can be combined with structured probabilistic inference — also for the next decades to come

    CORDS: automatic discovery of correlations and soft functional dependencies

    No full text
    The rich dependency structure found in the columns of real-world relational databases can be exploited to great advantage, but can also cause query optimizers---which usually assume that columns are statistically independent---to underestimate the selectivities of conjunctive predicates by orders of magnitude. We introduce CORDS, an efficient and scalable tool for automatic discovery of correlations and soft functional dependencies between columns. CORDS searches for column pairs that might have interesting and useful dependency relations by systematically enumerating candidate pairs and simultaneously pruning unpromising candidates using a flexible set of heuristics. A robust chi-squared analysis is applied to a sample of column values in order to identify correlations, and the number of distinct values in the sampled columns is analyzed to detect soft functional dependencies. CORDS can be used as a data mining tool, producing dependency graphs that are of intrinsic interest. We focus primarily on the use of CORDS in query optimization. Specifically, CORDS recommends groups of columns on which to maintain certain simple joint statistics. These "column-group" statistics are then used by the optimizer to avoid naive selectivity estimates based on inappropriate independence assumptions. This approach, because of its simplicity and judicious use of sampling, is relatively easy to implement in existing commercial systems, has very low overhead, and scales well to the large numbers of columns and large table sizes found in real-world databases. Experiments with a prototype implementation show that the use of CORDS in query optimization can speed up query execution times by an order of magnitude. CORDS can be used in tandem with query feedback systems such as the LEO learning optimizer, leveraging the infrastructure of such systems to correct bad selectivity estimates and ameliorating the poor performance of feedback systems during slow learning phases

    Challenges for Dataset Search

    No full text

    SKY R-tree: An Index Structure for Distance-Based Top-k Query

    No full text

    A Self-adaptive Cross-Domain Query Approach on the Deep Web

    No full text

    Providing built-in keyword search capabilities in RDBMS

    No full text
    A common approach to performing keyword search over relational databases is to find the minimum Steiner trees in database graphs transformed from relational data. These methods, however, are rather expensive as the minimum Steiner tree problem is known to be NP-hard. Further, these methods are independent of the underlying relational database management system (RDBMS), thus cannot benefit from the capabilities of the RDBMS. As an alternative, in this paper we propose a new concept called Compact Steiner Tree (CSTree), which can be used to approximate the Steiner tree problem for answering top-k keyword queries efficiently. We propose a novel structure-aware index, together with an effective ranking mechanism for fast, progressive and accurate retrieval of top-k highest ranked CSTrees. The proposed techniques can be implemented using a standard relational RDBMS to benefit from its indexing and query-processing capability. We have implemented our techniques in MYSQL, which can provide built-in keyword-search capabilities using SQL. The experimental results show a significant improvement in both search efficiency and result quality comparing to existing state-of-the-art approaches
    corecore